As a general guide, base 2 is denoted by ($)_{2}$. Base 3 is denoted by ()$_{3}$ and so on. If we are in a system of base n, there is a carry over of 1 whenever we reach n. Likewise, if we reach $n+1$, the number becomes 11 . We look at some examples shown below.

$$
\begin{aligned}
& (101)_{2}+(111)_{2}=(1100)_{2} \\
& (223)_{4}+(323)_{4}=(1212)_{4} \\
& (345)_{6}+(555)_{5}=(1344)_{6}
\end{aligned}
$$

Compute the following.
(a) $(1001)_{2}+(1100)_{2}$
(b) $(2341)_{5}+(143)_{5}$

Advanced Example 1

Compute the following.
(a) $(1101)_{2} \times(101)_{2}$
(b) $(10011)_{2} \times(110)_{2}$

Rewrite the numbers in base 10 and other bases in their expanded form.
(a) $(632)_{10}=$
(b) $(1864)_{10}=$
(c) $(7453)_{8}=$
(d) $(5241)_{6}=$
(e) $(1233)_{4}=$
(f) $(111001)_{2}=$

Advanced Example 3

Convert these numbers from base 10 to the base indicated below.
(a) $(8540)_{10}=($
$)_{5}$
(b) $(72)_{10}=($ $)_{2}$

Convert these numbers from other bases to base 10.
(a) $(1234)_{5}=($ $)_{10}$
(b) $(7746)_{8}=($ $)_{10}$

Compute the following.
(a) $(1011)_{2}+(1111)_{2}$
(b) $(11011)_{2}+(10011)_{2}$
$\begin{array}{ll}\text { (c) }(111111)_{2}+(11011)_{2} & \text { (d) }(11111)_{2}-(10011)_{2}\end{array}$

Convert these numbers from base 10 to the bases indicated below.
(a) $(1237)_{10}=($
$)_{4}$ (b) $(9653)_{10}=($
$)_{8}$

Rewrite these numbers in base 10 or other bases in expanded form.
(a) $(894)_{10}$
(b) $(17653)_{10}$
(c) $(4321)_{5}$
(d) $(6544)_{7}$
(e) $(8888)_{9}$
(i) $(7546)_{8}$

Convert these numbers in other bases to base 10.
(a) $(10111)_{2}=(\quad)_{10}$
(b) $(100100)_{2}=(\quad)_{10}$
(c) $(123123)_{4}=(\quad)_{10}$
(d) $(443322)_{5}=(\quad)_{10}$

Complete the table below.

base 10	2	$($	$)$	6	$($

Advanced Question 5

Convert these number in other bases to base 10.
(a) $(1202)_{3}=(\quad)_{10}$
(b) $(4321)_{5}=(\quad)_{10}$

Complete the base 6 times table.

	1	2	3	4	5
1	1	2	3	4	5
2		4	10	12	14
3			13	20	23
4				24	32
5					41

Find the number base in which

$A B C D$
$+\quad B C C A$
$D B 000$

is computed.

Advanced Question 8

Complete the base 8 times table

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2		4	6	10	12	14	16
3			11	14	17	22	25
4				20	24	30	34
5					31	36	43
6						44	52
7							61

Advanced Question 9

Given $(122)_{4}=(a b c)_{5}$, find the number represented by abc.

Advanced Question 10

Given $(724)_{8}=(a b c)_{9}$, find the value represented by $a b c$.

A number in base 10 can be expressed as $(a b c)_{3}$. It can also be expressed as (cba) ${ }_{4}$.
Find the number.

Advanced Question 12

Solution for Advanced Example 1

(a) $(1001)_{2}+(1100)_{2}$ $=(10101)_{2}$

1001
+1100
10101

Notice in base 2, (1+1)
is expressed as 10 .
(b) $(2341)_{5}+(143)_{5}$ $=(3034)_{5}$

$$
\begin{array}{r}
2341 \\
+\quad 143 \\
\hline 3034 \\
\hline
\end{array}
$$

Notice in base 5, (4+4)
is expressed as 13 .

Solution for Advanced Example 2

$\text { (a) } \begin{aligned} & (1101)_{2} \times(101)_{2} \\ = & (1000001)_{2} \end{aligned}$	$\text { (b) } \begin{aligned} & (10011)_{2} \times(110)_{2} \\ = & (1110010)_{2} \end{aligned}$
1101	10011
101 $\times \quad 101$	$\times 110$
1101	10010
$+1101$	+10011
1000001	1110010

Note that $(1+1)$ is expressed as 10 in both (a) and (b).

Solution for Advanced Example 3

(a) $(632)_{10}=6 \times 10^{2}+3 \times 10^{1}+2 \times 10^{0}$ $\left(10^{\circ}=1\right)$
(b) $(1864)_{10}=1 \times 10^{3}+8 \times 10^{2}+6 \times 10^{1}+4 \times 10^{0}$
$\left(10^{\circ}=1\right)$
(c) $(7453)_{8}=7 \times 8^{3}+4 \times 8^{2}+5 \times 8^{1}+3 \times 8^{0}$
(d) $(5241)_{6}=5 \times 6^{3}+2 \times 6^{2}+4 \times 6^{1}+1 \times 6^{0}$
$\left(8^{0}=1\right)$
(e) $(1233)_{4}=1 \times 4^{3}+2 \times 4^{2}+3 \times 4^{1}+3 \times 4^{0}$
(f) $(111001)_{2}=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{0}$

Solution for Advanced Example 5
(a) $\begin{aligned}(1234)_{5} & =1 \times 5^{3}+2 \times 5^{2}+3 \times 5^{1}+4 \times 5^{0} \\ & =125+50+15+4 \\ & =(194)_{10}\end{aligned}$
(b) $(7746)_{8}=7 \times 8^{3}+7 \times 8^{2}+4 \times 8^{1}+6 \times 8^{0}$ $=3584+448+32+6$ $=(4070)_{10}$

Solution for Advanced Question 1
(a)

1011	11011
$\begin{array}{r}1111 \\ \hline 11010\end{array}$	+10011
11010	101110

(c) 111111
(d) $\begin{array}{r}11111 \\ -10011 \\ \hline-1100 \\ \hline\end{array}$

10011
1100

Solution for Advanced Question 2

(a)

$4 \lcm{1237}$	
$4 \underline{4} 09$	- R1
$4 \lcm{77}$	- R1
$4 \lcm{19}$	- R1 \uparrow
$4 \downharpoonright 4$	- R3
1	$\rightarrow \mathrm{RO}$

$(1237)_{10}=(103111)_{4}$
(b) 89653

$8 \lcm{1406}$	$-R 5$
$8 \lcm{150}$	$-R 6$
$8\lfloor 18$	$-R 6 \uparrow$
$8\lfloor 2$	$-R 2$
0	$\rightarrow R 2$
$(9653)_{10}=(22665)_{8}$	

Solution for Advanced Question 3

(a) $(894)_{10}=8 \times 10^{2}+9 \times 10^{1}+4 \times 10^{0}$
(b) $(17653)_{10}=1 \times 10^{4}+7 \times 10^{3}+6 \times$ $10^{2}+5 \times 10^{1}+3 \times 10^{0}$
(c) $(432.1)_{5}=4 \times 5^{3}+3 \times 5^{2}+2 \times 5^{1}+1 \times 5^{0}$
(d) $(6544)_{7}=6 \times 7^{3}+5 \times 7^{2}+4 \times 7^{1}+4 \times 7^{0}$
(e) $(8888)_{9}=8 \times 9^{3}+8 \times 9^{2}+8 \times 9^{1}+8 \times 9^{a}$
(f) $(7546)_{8}=7 \times 8^{3}+5 \times 8^{2}+4 \times 8^{1}+6 \times 8^{0}$

Solution for Advanced Question 4

(a) $(10111)_{2}=1 \times 2^{4}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=16+4+2+1=(23)_{10}$
(b) $(100100)_{2}=1 \times 2^{5}+1 \times 2^{2}$
$=32+4=(36)_{10}$
(c) $(123123)_{4}$
$=1 \times 4^{5}+2 \times 4^{4}+3 \times 4^{3}+1 \times 4^{2}+2$ $\times 4^{1}+3 \times 4^{0}$
$=1024+512+192+16+8+3$
$=(1755)_{10}$
(d) $(443322)_{5}$
$=4 \times 5^{5}+4 \times 5^{4}+3 \times 5^{3}+3 \times 5^{2}+2$
$\times 5^{1}+2 \times 5^{0}$
$=12500+2500+375+75+10+2$
$=(15462)_{i 0}$

Solution for Advanced Question 5

Base 10	2	4	6	8	10
Base 3	2	11	20	22	101

Solution for Advanced Question 6

(a) $(1202)_{3}=1 \times 3^{3}+2 \times 3^{2}+2 \times 3^{0} \quad\left(3^{0}=1\right)$

$$
\begin{aligned}
& =27+.18+2 \\
& =(47)_{10}
\end{aligned}
$$

(b) $(4321)_{5}$

$$
\begin{aligned}
& =4 \times 5^{3}+3 \times 5^{2}+2 \times 5^{1}+1 \times 5^{0} \quad\left(5^{0}=1\right) \\
& =500+75+10+1 \\
& =(586)_{10}
\end{aligned}
$$

Solution for Advanced Question 7

	1	2	3	4	5
	1	2	3	4	5
2	2	4	10	12	14
3	3	10	13	20	23
4	4	12	20	24	32
5	5	14	23	32	41

Solution for Advanced Question 8

$$
4321
$$

$\begin{array}{r}4324 \\ +\quad 312000 \\ \hline\end{array}$

This computation is based on base 5 .

Solution for Advanced Question 9

	1	2	3	4	5	6	7
	1	2	3	4	5	6	7
2	2	4	6	10	12	14	16
3	3	6	11	14	17	22	25
4	4	10	14	20	24	30	34
5	5	12	17	24	31	36	43
6	6	14	22	30	36	44	52
7	7	16	25	24	43	52	61

Solution for Advanced Question 10

$$
\begin{array}{rlr}
(122)_{4} & =1 \times 4^{2}+2 \times 4^{1}+2 \times 4^{0} \\
& =16+8+2 & \frac{5!26}{5!5}-\mathrm{Rt} \\
& =(26)_{10} & \\
a b c & =101 &
\end{array}
$$

The number represented by abc is 101 .

Solution for Advanced Question 11

$(724)_{\mathrm{B}}=7 \times 8^{2}+2 \times 8^{1}+4 \times 8^{0}$

$$
\begin{array}{lr}
=448+16+4 & 9!468 \\
=(468)_{\text {i0 }} & \frac{9[52}{}-\mathrm{R0} \\
570 & 9[5-\mathrm{R} 7 \\
50-R 5
\end{array}
$$

$a b c=570$
The value represented by abc is $\mathbf{5 7 0}$.

Solution for Advanced Question 12

$$
\begin{gathered}
(\mathrm{abc})_{3}=a \times 3^{2}+b \times 3^{1}+c \times 3^{0} \\
=9 a+3 b+c \\
(c b a)_{4}=c \times 4^{2}+b \times 4^{1}+a \times 4^{0} \\
=16 c+4 b+a \\
\text { Equating, } \\
9 a+3 b+c=16 c+4 b+a \\
8 a-b-15 c=0 \\
8 a=b+15 c
\end{gathered}
$$

We are bound by base 3 and base 4 .

$$
a=2, b=1, c=1
$$

The number is 211 .

