As a general guide, base 2 is denoted by $(\)_2$. Base 3 is denoted by $(\)_3$ and so on. If we are in a system of base n, there is a carry over of 1 whenever we reach n. Likewise, if we reach n+1, the number becomes 11. We look at some examples shown below.

$$(101)_2 + (111)_2 = (1100)_2$$

 $(223)_4 + (323)_4 = (1212)_4$
 $(345)_6 + (555)_6 = (1344)_6$

Compute the following.

- (a) $(1001)_2 + (1100)_2$
- **(b)** $(2341)_5 + (143)_5$

Advanced Example 1

Compute the following.

- (a) $(1101)_2 \times (101)_2$
- **(b)** $(10011)_2 \times (110)_2$

Advanced Example 2

Rewrite the numbers in base 10 and other bases in their expanded form.

- **(a)** (632)₁₀ =
- **(b)** $(1864)_{10} =$
- (c) $(7453)_8 =$
- **(d)** $(5241)_6 =$
- **(e)** (1233)₄ =
- **(f)** $(111001)_2 =$

Advanced Example 3

Convert these numbers from base 10 to the base indicated below.

- (a) $(8540)_{10} = ($
-)5
- **(b)** (72)₁₀ = (
-),

Advanced Example 4

Convert these numbers from other bases to base 10.

(a)
$$(1234)_5 = ($$

(b)
$$(7746)_8 = ($$

Advanced Example 5

Compute the following.

(a)
$$(1011)_2 + (1111)_2$$
 (b) $(11011)_2 + (10011)_2$

(c)
$$(1111111)_2 + (11011)_2$$
 (d) $(111111)_2 - (10011)_2$

Convert these numbers from base 10 to the bases indicated below.

- (a) $(1237)_{10} = ($ $)_4$ (b) $(9653)_{10} = ($

Advanced Question 2

Rewrite these numbers in base 10 or other bases in expanded form.

- (a) $(894)_{10}$
- **(b)** (17653)₁₀
- **(c)** (4321)₅
- (d) $(6544)_7$
- **(e)** (8888)₉
- **(1)** (7546)₈

Convert these numbers in other bases to base 10.

(a)
$$(10111)_2 = ($$

)10

(b)
$$(100100)_2 = ($$

 $)_{10}$

(c)
$$(123123)_4 = ($$

 $)_{10}$

(d)
$$(443322)_s = ($$

),,

Advanced Question 4

Complete the table below.

base 10		2	()		6	()		10
base 3	()	1:	L	()	2	2	()

Convert these number in other bases to base 10.

(a)
$$(1202)_3 = ($$
 $)_{10}$

(b)
$$(4321)_5 = ($$
 $)_{10}$

Complete the base 6 times table.

	1	2	3	4	5
1	1	2	3	4	5
2		4	10	12	14
3			13	20	23
4				24	32
5	•				41

Advanced Question 7

Find the number base in which

is computed.

Complete the base 8 times table

	1	2	3	4	5	6	7
1	1	2	. 3	4	5	6	7
2		4	6	10	12	14	16
3			11	14	17	22	25
4				20	24	30	34
5	-				31	36	43
6	-					44	52
7							61

Advanced Question 9

Given $(122)_4 = (abc)_5$, find the number represented by abc.

Given $(724)_8 = (abc)_9$, find the value represented by abc.	
	Advanced Question 11
A number in base 10 can be expressed as (abc) ₃ . t can also be expressed as (cba) ₄ . Find the number.	
ind the namber.	Advanced Question 12
	Advanced Question 12

Solution for Advanced Example 1

(a)
$$(1001)_2 + (1100)_2$$

= $(10101)_2$
$$\begin{array}{rrrr} 1 & 0 & 0 & 1 \\ + & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 \end{array}$$

Notice in base 2, (1 + 1) is expressed as 10.

(b)
$$(2341)_5 + (143)_5$$

= $(3034)_5$
$$\begin{array}{r} 2 & 3 & 4 & 1 \\ + & 1 & 4 & 3 \\ \hline & 3 & 0 & 3 & 4 \\ \end{array}$$
Notice in base 5. $(4 + 4)$

Notice in base 5, (4 + 4) is expressed as 13.

Solution for Advanced Example 2

Note that (1 + 1) is expressed as 10 in both (a) and (b).

Solution for Advanced Example 3

(a)
$$(632)_{10} = 6 \times 10^2 + 3 \times 10^1 + 2 \times 10^0$$
 $(10^0 = 1)$

(b)
$$(1864)_{10} = 1 \times 10^3 + 8 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$$
 $(10^0 = 1)$

(c)
$$(7453)_8 = 7 \times 8^3 + 4 \times 8^2 + 5 \times 8^1 + 3 \times 8^0$$
 $(8^0 = 1)$

(d)
$$(5241)_6 = 5 \times 6^3 + 2 \times 6^2 + 4 \times 6^1 + 1 \times 6^0$$
 $(6^0 = 1)$

(e)
$$(1233)_4 = 1 \times 4^3 + 2 \times 4^2 + 3 \times 4^1 + 3 \times 4^0$$
 $(4^0 = 1)$

(f)
$$(111001)_2 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0$$
 $(2^0 = 1)$

Solution for Advanced Example 4

(a)
$$5 \begin{bmatrix} 8540 \\ 5 \begin{bmatrix} 1708 \\ -80 \end{bmatrix}$$
 (b) $2 \begin{bmatrix} 72 \\ 2 \begin{bmatrix} 36 \\ -80 \end{bmatrix}$ R0 $2 \begin{bmatrix} 18 \\ -80 \end{bmatrix}$ $2 \begin{bmatrix} 1$

Solution for Advanced Example 5

(a)
$$(1234)_5 = 1 \times 5^3 + 2 \times 5^2 + 3 \times 5^1 + 4 \times 5^0$$

 $= 125 + 50 + 15 + 4$
 $= (194)_{10}$
(b) $(7746)_8 = 7 \times 8^3 + 7 \times 8^2 + 4 \times 8^1 + 6 \times 8^0$
 $= 3584 + 448 + 32 + 6$
 $= (4070)_{10}$

Solution for Advanced Question 1

Solution for Advanced Question 2

(a)
$$4 \[1 \ 2 \ 3 \ 7 \]$$
 $4 \[3 \ 0 \ 9 \] - R1$
 $4 \[7 \ 7 \] - R1$
 $4 \[1 \ 9 \] - R1 \]$
 $4 \[4 \] - R3$
 $1 \] \rightarrow R0$
 $(1237)_{10} = (103111)$

(b)
$$8 \ | 9 \ 6 \ 5 \ 3$$

 $8 \ | 1 \ 2 \ 0 \ 6$ $- \ R5$
 $8 \ | 1 \ 5 \ 0$ $- \ R6$
 $8 \ | 1 \ 8$ $- \ R6 \ 1$
 $8 \ | 2$ $- \ R2$
 $0 \ \rightarrow R2$
 $(9653)_{10} = (22665)_{8}$

Solution for Advanced Question 3

(a)
$$(894)_{10} = 8 \times 10^2 + 9 \times 10^1 + 4 \times 10^0$$

(b)
$$(17653)_{10} = 1 \times 10^4 + 7 \times 10^3 + 6 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$$

(c)
$$(4321)_5 = 4 \times 5^3 + 3 \times 5^2 + 2 \times 5^1 + 1 \times 5^0$$

(d)
$$(6544)_7 = 6 \times 7^3 + 5 \times 7^2 + 4 \times 7^1 + 4 \times 7^0$$

(e)
$$(8888)_9 = 8 \times 9^3 + 8 \times 9^2 + 8 \times 9^1 + 8 \times 9^0$$

(1)
$$(7546)_a = 7 \times 8^3 + 5 \times 8^2 + 4 \times 8^1 + 6 \times 8^0$$

Solution for Advanced Question 4

(a)
$$(10111)_2 = 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

 $= 16 + 4 + 2 + 1 = (23)_{10}$
(b) $(100100)_2 = 1 \times 2^5 + 1 \times 2^2$
 $= 32 + 4 = (36)_{10}$
(c) $(123123)_4$
 $= 1 \times 4^5 + 2 \times 4^4 + 3 \times 4^3 + 1 \times 4^2 + 2 \times 4^1 + 3 \times 4^0$
 $= 1024 + 512 + 192 + 16 + 8 + 3$
 $= (1755)_{10}$
(d) $(443322)_5$
 $= 4 \times 5^5 + 4 \times 5^4 + 3 \times 5^3 + 3 \times 5^2 + 2 \times 5^1 + 2 \times 5^0$
 $= 12500 + 2500 + 375 + 75 + 10 + 2$
 $= (15462)_{10}$

Solution for Advanced Question 5

Base 10	2	4	6	8	10
Base 3	2	11	20	22	101

Solution for Advanced Question 6

(a)
$$(1202)_3 = 1 \times 3^3 + 2 \times 3^2 + 2 \times 3^0$$
 ($3^0 = 1$)
 $= 27 + .18 + .2$
 $= (47)_{10}$
(b) $(4321)_5$
 $= 4 \times 5^3 + 3 \times 5^2 + 2 \times 5^1 + 1 \times 5^0$ ($5^0 = 1$)
 $= 500 + .75 + 10 + 1$
 $= (586)_{10}$

Solution for Advanced Question 7

	1	2	3	4	5
1	1	2	3	4	5
2	2	4	10	12	14
3	3	10	13	20	23
4	4	12	20	24	32
5	5	14	23	32	41

Solution for Advanced Question 8

This computation is based on base 5.

Solution for Advanced Question 9

Solution for Advanced Question 10

$$(122)_4 = 1 \times 4^2 + 2 \times 4^1 + 2 \times 4^0$$

= $16 + 8 + 2$
= $(26)_{10}$
= $5 = 101$
 $1 \rightarrow 80$

The number represented by abc is 101.

Solution for Advanced Question 11

$$(724)_{8} = 7 \times 8^{2} + 2 \times 8^{1} + 4 \times 8^{0}$$

= $448 + 16 + 4$ 9 4 6 8
= $(468)_{10}$ 9 5 - R0
abc = 570 0 - R5

The value represented by abc is 570.

Solution for Advanced Question 12

$$(abc)_3 = a \times 3^2 + b \times 3^1 + c \times 3^0$$

 $= 9a + 3b + c$
 $(cba)_4 = c \times 4^2 + b \times 4^1 + a \times 4^0$
 $= 16c + 4b + a$
Equating,
 $9a + 3b + c = 16c + 4b + a$
 $8a - b - 15c = 0$
 $8a = b + 15c$
We are bound by base 3 and base 4.
 $a = 2, b = 1, c = 1$
The number is 211.